
 1

Multitier architecture
In software engineering, multitier architecture (often referred to as n-tier

architecture) or multilayered architecture is a client–server architecture in which

presentation, application processing, and data management functions are

physically separated. The most widespread use of multitier architecture is the three-

tier architecture.

N-tier application architecture provides a model by which developers can create

flexible and reusable applications. By segregating an application into tiers,

developers acquire the option of modifying or adding a specific layer, instead of

reworking the entire application. A three-tier architecture is typically composed of a

presentation tier, a domain logic tier, and a data storage tier.

While the concepts of layer and tier are often used interchangeably, one fairly

common point of view is that there is indeed a difference. This view holds that a

layer is a logical structuring mechanism for the elements that make up the software

solution, while a tier is a physical structuring mechanism for the system

infrastructure. For example, a three-layer solution could easily be deployed on a

single tier, such as a personal workstation.

Common layers
In a logical multilayered architecture for an information system with an object-

oriented design, the following four are the most common:

 Presentation layer (a.k.a. UI layer, view layer, presentation tier in multitier

architecture)

 Application layer (a.k.a. service layer or GRASP Controller Layer)

 Business layer (a.k.a. business logic layer (BLL), domain layer)

 Data access layer (a.k.a. persistence layer, logging, networking, and other

services which are required to support a particular business layer)

Three-tier architecture
Three-tier architecture is a client–server software architecture pattern in which the

user interface (presentation), functional process logic ("business rules"), computer

data storage and data access are developed and maintained as independent modules,

most often on separate platforms. It was developed by John J. Donovan in Open

 2

Environment Corporation (OEC), a tools company he founded in Cambridge,

Massachusetts.

Apart from the usual advantages of modular software with well-defined interfaces,

the three-tier architecture is intended to allow any of the three tiers to be upgraded

or replaced independently in response to changes in requirements or technology. For

example, a change of operating system in the presentation tier would only affect the

user interface code.

Typically, the user interface runs on a desktop PC or workstation and uses a standard

graphical user interface, functional process logic that may consist of one or more

separate modules running on a workstation or application server, and an RDBMS on

a database server or mainframe that contains the computer data storage logic. The

middle tier may be multitiered itself (in which case the overall architecture is called

an "n-tier architecture").

Three-tier architecture:
 Presentation tier

This is the topmost level of the application. The presentation

tier displays information related to such services as

browsing merchandise, purchasing and shopping cart

contents. It communicates with other tiers by which it puts

out the results to the browser/client tier and all other tiers in

the network. In simple terms, it is a layer which users can

access directly (such as a web page, or an operating system's

GUI).

 Application tier (business logic, logic tier, or middle tier)

The logical tier is pulled out from the presentation tier and,

as its own layer, it controls an application’s functionality by

performing detailed processing.

 Data tier

The data tier includes the data persistence mechanisms

(database servers, file shares, etc.) and the data access layer

that encapsulates the persistence mechanisms and exposes

the data. The data access layer should provide an API to the

application tier that exposes methods of managing the stored

data without exposing or creating dependencies on the data

storage mechanisms. Avoiding dependencies on the storage

 3

mechanisms allows for updates or changes without the application tier clients

being affected by or even aware of the change. As with the separation of any tier,

there are costs for implementation and often costs to performance in exchange for

improved scalability and maintainability.

Benefits of separating an application into tiers

1. It gives you the ability to update the technology stack of one tier, without

impacting other areas of the application.

2. It allows for different development teams to each work on their own areas

of expertise. Today’s developers are more likely to have deep competency

in one area, like coding the front end of an application, instead of working

on the full stack.

3. You are able to scale the application up and out. A separate back-end tier,

for example, allows you to deploy to a variety of databases instead of

being locked into one particular technology. It also allows you to scale up

by adding multiple web servers.

4. It adds reliability and more independence of the underlying servers or

services.

5. It provides an ease of maintenance of the code base, managing presentation

code and business logic separately, so that a change to business logic, for

example, does not impact the presentation layer.

Example of Three tier architecture

We will implement university application were we will have student name and can

add student and secure our application with user name and password.

Step 1. Create database

First create database in sql server

 4

 5

 6

 7

Step 2. Create win form application

Add new project

 8

 9

Then write the code:

 10

 11

Add two new Project

 12

First model we create will by user model

Public Class AppUser
 Public Property Id As Integer
 Public Property Name As String
 Public Property Password As String
End Class

Add refrence to model and datalayer from business layer

 13

Now we add user repository in business Layer

 14

Add reference from UI to business layer

 15

Control Properties Value

Form Text

Font

Back Color

Form login

Segoe UI, 9.75pt

White

Label 1 Text User Name

Label 2 Text Password

Text Box (Name) txtUserName

Text Box (Name) txtPassword

Button Name

Text

btnLogin

Login

The code for login will be as follow

Modify frmMain by adding four button

Control Properties Value

Form Text

Name

Main

frmMain

Button 1 Name

Text

Image

ImageAlign

FlatStyle

btnUser

User

MiddleLeft

Flat

Button 2 Name

Text

Image

ImageAlign

FlatStyle

btnStudent

Student

MiddleLeft

Flat

 16

Button 3 Name

Text

Image

ImageAlign

FlatStyle

btnDepartment

Department

MiddleLeft

Flat

So the code for user button will be:
Private Sub btnUser_Click(sender As Object, e As EventArgs) Handles btnUser.Click
 frmUser.Show()
End Sub

Add new form

Control Properties Value

Form Text

Name

User

frmUser

Label Text User Form

Button 1 Name

Text

Image

ImageAlign

FlatStyle

btnAdd

&Add

MiddleLeft

Flat

Button 2 Name

Text

Image

ImageAlign

FlatStyle

btnUpdate

&Update

MiddleLeft

Flat

Button 3 Name

Text

Image

ImageAlign

FlatStyle

btnDelete

&Delete

MiddleLeft

Flat

Button 4 Name

Text

Image

ImageAlign

btnExit

Exit

MiddleLeft

 17

FlatStyle Flat

Label 1 Text

Font

Id

Segoe UI, 12pt

Label 2 Text

Font

User Name

Segoe UI, 12pt

Label 3 Text

Font

Password

Segoe UI, 12pt

Text Box (Name) txtId

Text Box (Name) txtUserName

Text Box (Name) txtPassword

DataGridView (Name) dgvUser

Double click on form and add code to load DataGridView
Private Sub frmUser_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 Dim userRepository As New UserRepository
 dgvUser.DataSource=userRepository.GetUser()
End Sub

Double click on Add button and add code:

Private Sub btnAdd_Click(sender As Object, e As EventArgs) Handles btnAdd.Click
 Dim userRepository As New UserRepository

 If Not txtUserName.Text = Nothing and not txtPassword.Text =Nothing Then
 Dim usr As New AppUser
 usr.Name=txtUserName.Text
 usr.Password=txtPassword.Text
 If userRepository.Add(usr) >0 Then
 MessageBox.Show("User Add Successfully")
 dgvUser.DataSource=userRepository.GetUser()

 End If
 End If
 End Sub

Double click on Update button and add code:
Private Sub btnUpdate_Click(sender As Object, e As EventArgs) Handles btnUpdate.Click
 Dim userRepository As New UserRepository

 If Not txtId.Text = Nothing and Not txtUserName.Text = Nothing and not
txtPassword.Text =Nothing Then
 Dim usr As New AppUser
 usr.Id=txtId.Text
 usr.Name=txtUserName.Text
 usr.Password=txtPassword.Text
 If userRepository.Update(usr) >0 Then
 MessageBox.Show("User Update Successfully")
 dgvUser.DataSource=userRepository.GetUser()
 End If
 End If
 End Sub

