Multitier architecture

In software engineering, multitier architecture (often referred to as n-tier architecture) or multilayered architecture is a client–server architecture in which **presentation**, **application** processing, and **data management** functions are physically separated. The most widespread use of multitier architecture is the three-tier architecture.

N-tier application architecture provides a model by which developers can create flexible and reusable applications. By segregating an application into tiers, developers acquire the option of modifying or adding a specific layer, instead of reworking the entire application. A three-tier architecture is typically composed of a presentation tier, a domain logic tier, and a data storage tier.

While the concepts of layer and tier are often used interchangeably, one fairly common point of view is that there is indeed a difference. This view holds that a layer is a logical structuring mechanism for the elements that make up the software solution, while a tier is a physical structuring mechanism for the system infrastructure. For example, a three-layer solution could easily be deployed on a single tier, such as a personal workstation.

Common layers

In a logical multilayered architecture for an information system with an objectoriented design, the following four are the most common:

- Presentation layer (a.k.a. UI layer, view layer, presentation tier in multitier architecture)
- Application layer (a.k.a. service layer or GRASP Controller Layer)
- Business layer (a.k.a. business logic layer (BLL), domain layer)
- Data access layer (a.k.a. persistence layer, logging, networking, and other services which are required to support a particular business layer)

Three-tier architecture

Three-tier architecture is a client—server software architecture pattern in which the user interface (presentation), functional process logic ("business rules"), computer data storage and data access are developed and maintained as independent modules, most often on separate platforms. It was developed by John J. Donovan in Open

Environment Corporation (OEC), a tools company he founded in Cambridge, Massachusetts.

Apart from the usual advantages of modular software with well-defined interfaces, the three-tier architecture is intended to allow any of the three tiers to be upgraded or replaced independently in response to changes in requirements or technology. For example, a change of operating system in the presentation tier would only affect the user interface code.

Typically, the user interface runs on a desktop PC or workstation and uses a standard graphical user interface, functional process logic that may consist of one or more separate modules running on a workstation or application server, and an RDBMS on a database server or mainframe that contains the computer data storage logic. The middle tier may be multitiered itself (in which case the overall architecture is called an "n-tier architecture").

Three-tier architecture:

• Presentation tier

This is the topmost level of the application. The presentation tier displays information related to such services as browsing merchandise, purchasing and shopping cart contents. It communicates with other tiers by which it puts out the results to the browser/client tier and all other tiers in the network. In simple terms, it is a layer which users can access directly (such as a web page, or an operating system's GUI).

• **Application tier** (business logic, logic tier, or middle tier) The logical tier is pulled out from the presentation tier and, as its own layer, it controls an application's functionality by performing detailed processing.

• Data tier

The data tier includes the data persistence mechanisms (database servers, file shares, etc.) and the data access layer that encapsulates the persistence mechanisms and exposes the data. The data access layer should provide an API to the application tier that exposes methods of managing the stored data without exposing or creating dependencies on the data storage mechanisms. Avoiding dependencies on the storage

mechanisms allows for updates or changes without the application tier clients being affected by or even aware of the change. As with the separation of any tier, there are costs for implementation and often costs to performance in exchange for improved scalability and maintainability.

Benefits of separating an application into tiers

- 1. It gives you the ability to update the technology stack of one tier, without impacting other areas of the application.
- 2. It allows for different development teams to each work on their own areas of expertise. Today's developers are more likely to have deep competency in one area, like coding the front end of an application, instead of working on the full stack.
- 3. You are able to scale the application up and out. A separate back-end tier, for example, allows you to deploy to a variety of databases instead of being locked into one particular technology. It also allows you to scale up by adding multiple web servers.
- 4. It adds reliability and more independence of the underlying servers or services.
- 5. It provides an ease of maintenance of the code base, managing presentation code and business logic separately, so that a change to business logic, for example, does not impact the presentation layer.

Example of Three tier architecture

We will implement university application were we will have student name and can add student and secure our application with user name and password.

Step 1. Create database

First create database in sql server

👺 DESKTOP-7ELK7LC.StudetntDB - Diagram_0 - Microsoft SQL Server Management Studio

Step 2. Create win form application

Add new project

Then write the code:

Add two new Project

First model we create will by user model

```
Public Class AppUser
Public Property Id As Integer
Public Property Name As String
Public Property Password As String
End Class
```

Add refrence to model and datalayer from business layer

Now we add user repository in business Layer

```
3 references
Public Class UserRepository
 4 =
 5
         Function IsUserExist(usr As AppUser) As Boolean
             Dim sql As String=$"select Name from UserTable where name='{usr.Name}' and password='{usr.Password}'"
             Dim name as string=DataAccess.GetSingleItems(sql)
 8
             Return name=usr.Name
         End Function
         Public Function GetUser() As List(Of AppUser)
11
             Dim dt As DataTable= DataAccess.GetMultitpleItems("select id,Name from UserTable")
12
             Dim users As New List(Of AppUser)
13
             For Each row As Object In dt.Rows
14
                Dim user As New AppUser
15
                user.Id=row(0)
16
                user.Name=row(1)
17
18
                users.Add(user)
19
             Next
20
             Return users
21
         End Function
         Public Function Add(user As AppUser) As Integer
23
             Dim sql =String.Format("INSERT INTO UserTable (Name, Password) VALUES ('{0}', '{1}')", user.Name, user.Password)
24
             Dim row =DataAccess.InsertUpdateDelete(sql)
25
             Return row
26
         End Function
         Public Function Update(user As AppUser) As Integer
27
             28
29
             Dim row =DataAccess.InsertUpdateDelete(sql)
30
             Return row
31
         End Function
      End Class
```

Add reference from UI to business layer

Control	Properties	Value
Form	Text	Form login
	Font	Segoe UI, 9.75pt
	Back Color	White
Label 1	Text	User Name
Label 2	Text	Password
Text Box	(Name)	txtUserName
Text Box	(Name)	txtPassword
Button	Name	btnLogin
	Text	Login

The code for login will be as follow

```
Imports BusinessLayer
Imports Model
Public Class frmLogin
    Private Sub btnLogin_Click(sender As Object, e As EventArgs) Handles btnLogin.Click
        Dim appUser As New AppUser
        Dim userRepository As New UserRepository
        If Not txtUserName.Text = Nothing And Not txtPassword.Text = Nothing Then
            appUser.Name = txtUserName.Text
            appUser.Password = txtPassword.Text
            If userRepository.IsUserExist(appUser) Then
                Me.Hide()
                frmMain.Show()
                MessageBox.Show("Error user or password", "Error", MessageBoxButtons.RetryCancel, MessageBoxIcon.Error)
            MessageBox.Show("Enter Valid User Name and password", "Required Info", MessageBoxButtons.RetryCancel, MessageBoxIcon.Error)
    End Sub
End Class
```

Modify frmMain by adding four button

Control	Properties	Value
Form	Text	Main
	Name	frmMain
Button1	Name	btnUser
	Text	User
	Image	
	ImageAlign	MiddleLeft
	FlatStyle	Flat
Button2	Name	btnStudent
	Text	Student
	Image	
	ImageAlign	MiddleLeft
	FlatStyle	Flat

Button3	Name	btnDepartment
	Text	Department
	Image	_
	ImageAlign	MiddleLeft
	FlatStyle	Flat

So the code for user button will be:

Private Sub btnUser_Click(sender As Object, e As EventArgs) Handles btnUser.Click

frmUser.Show()

End Sub

Add new form

Control	Properties	Value
Form	Text	User
	Name	frmUser
Label	Text	User Form
Button1	Name	btnAdd
	Text	&Add
	Image	
	ImageAlign	MiddleLeft
	FlatStyle	Flat
Button2	Name	btnUpdate
	Text	&Update
	Image	
	ImageAlign	MiddleLeft
	FlatStyle	Flat
Button3	Name	btnDelete
	Text	&Delete
	Image	
	ImageAlign	MiddleLeft
	FlatStyle	Flat
Button4	Name	btnExit
	Text	Exit
	Image	
	ImageAlign	MiddleLeft

	FlatStyle	Flat
Label 1	Text	Id
	Font	Segoe UI, 12pt
Label 2	Text	User Name
	Font	Segoe UI, 12pt
Label 3	Text	Password
	Font	Segoe UI, 12pt
Text Box	(Name)	txtId
Text Box	(Name)	txtUserName
Text Box	(Name)	txtPassword
DataGridView	(Name)	dgvUser

Double click on form and add code to load DataGridView

Double click on Add button and add code:

Double click on Update button and add code:

End Sub

```
Private Sub btnUpdate_Click(sender As Object, e As EventArgs) Handles btnUpdate.Click
    Dim userRepository As New UserRepository

If Not txtId.Text = Nothing and Not txtUserName.Text = Nothing and not

txtPassword.Text = Nothing Then
    Dim usr As New AppUser
    usr.Id=txtId.Text
    usr.Name=txtUserName.Text
    usr.Password=txtPassword.Text
    If userRepository.Update(usr) >0 Then
        MessageBox.Show("User Update Successfully")
        dgvUser.DataSource=userRepository.GetUser()

End If

End If
```