
SQL Injection

SQL injection is a code injection technique that might destroy your database.

SQL injection is one of the most common web hacking techniques.

SQL injection is the placement of malicious code in SQL statements, via web page input.

SQL injection usually occurs when you ask a user for input, like their username/userid, and instead of a

name/id, the user gives you an SQL statement that you will unknowingly run on your database.

Look at the following example which creates a SELECT statement by adding a variable (txtUserId) to a

select string. The variable is fetched from user input (getRequestString):

1. txtUserId = getRequestString("UserId")
2. txtSQL = "SELECT * FROM UserTable WHERE Id = " + txtUserId

1- SQL Injection Based on 1=1 is Always True
Look at the example above again. The original purpose of the code was to create an SQL

statement to select a user, with a given user id. If there is nothing to prevent a user from entering

"wrong" input, the user can enter some "smart" input like this:

UserId: ali OR ‘1’=’1

SELECT * FROM [UserTable] WHERE [Id] = 'ali' OR 1=1;

The SQL above is valid and will return ALL rows from the "Users" table, since OR 1=1 is always

TRUE.

2- SQL Injection Based on ""="" is Always True
User name : " or ""="

Password : " or ""="

The code at the server will create a valid SQL statement like this:

1. SELECT * FROM Users WHERE Name = "" or "" = "" AND Pass = "" or "" = ""

The SQL above is valid and will return all rows from the "Users" table, since OR ""="" is always TRUE.

3- SQL Injection Based on Batched SQL Statements

Most databases support batched SQL statement.

A batch of SQL statements is a group of two or more SQL statements, separated by semicolons.

The SQL statement below will return all rows from the "Users" table, then delete the "Suppliers" table.

1. SELECT * FROM Users; DROP TABLE Suppliers

Look at the following example:

1. txtUserId = getRequestString("UserId");
2. txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

And the following input:

User id: Ali; DROP TABLE Student

1. SELECT * FROM Users WHERE UserId = 105; DROP TABLE Suppliers;

4- Use SQL Parameters for Protection

To protect a web site from SQL injection, you can use SQL parameters.

SQL parameters are values that are added to an SQL query at execution time, in a controlled manner.

First of all, update DataAccess class by adding optional parameter as list of dbparameter

 Public Shared Function GetSingleItems(ByVal sql As String, ByVal Optional dbParameter
As List(Of DbParameter) = Nothing) As Object
 Dim conn As New SqlConnection(ConnStr)
 Dim obj As Object
 Try
 conn.Open()
 Dim cmd As SqlCommand = New SqlCommand(sql, conn)
 If Not IsNothing(dbParameter) AndAlso dbParameter.Count > 0 Then
 For Each p As Object In dbParameter
 cmd.Parameters.Add(p)
 Next
 End If
 obj = cmd.ExecuteScalar()
 Catch e As Exception
 Throw
 Finally
 conn.Close()
 End Try
 Return obj
 End Function

Public Shared Function InsertUpdateDelete(ByVal sql As String, ByVal Optional dbParameter
As List(Of DbParameter) = Nothing) As Integer
 Dim rows As Integer = 0
 Dim conn As SqlConnection = New SqlConnection(ConnStr)
 Try
 conn.Open()
 Dim cmd As SqlCommand = New SqlCommand(sql, conn)
 If Not IsNothing(dbParameter) AndAlso dbParameter.Count > 0 Then
 For Each p As Object In dbParameter
 cmd.Parameters.Add(p)
 Next
 End If
 rows = cmd.ExecuteNonQuery()
 Catch e As Exception
 Throw
 Finally
 conn.Close()
 End Try

 Return rows
 End Function
 Public Shared Function GetMultitpleItems(ByVal sql As String, ByVal Optional
dbParameter As List(Of DbParameter) = Nothing) As DataTable
 Dim conn As New SqlConnection(ConnStr)
 Dim dt As New DataTable
 Try
 conn.Open()
 Dim da As SqlDataAdapter = New SqlDataAdapter()
 Dim cmd As SqlCommand = New SqlCommand(sql, conn)
 If Not IsNothing(dbParameter) AndAlso dbParameter.Count > 0 Then
 For Each p As Object In dbParameter
 cmd.Parameters.Add(p)
 Next
 End If
 da.SelectCommand=cmd
 da.Fill(dt)
 Catch e As Exception
 Throw
 Finally
 conn.Close()
 End Try
 Return dt
 End Function

Then we need to modify repository and use SQL parameters

1- Convert sql string as follow:

Dim sql = String.Format("Select name from UserTable where name ='{0}' and

password='{1}'", user.Name, user.Password)

Dim sql As String="select Name from UserTable where name='@Name' and

password='@Password'"

The code for IsUserExist is rewritten as follow:

Public Function IsUserExist(user As AppUser) As Boolean
 Dim sql As String="select Name from UserTable where name='@Name' and
password='@Password'"
 Dim plist As New List(of DbParameter)
 Dim p1=New SqlParameter("@Name",user.Name)
 plist.Add(p1)
 Dim p2=New SqlParameter("@Password",SqlDbType.NVarChar)
 p2.Value=user.Password
 plist.Add(p2)
 Dim name as string=DataAccess.GetSingleItems(sql,plist)
 Return name=user.Name
 End Function

The rest code of repository :

Public Function Add(user As AppUser) As Integer
 Dim sql ="INSERT INTO UserTable (Name,Password) VALUES ('@Name','@Password')"
 Dim plist As New List(of DbParameter)
 Dim p1=New SqlParameter("@Name",SqlDbType.NVarChar)
 p1.Value=user.Name
 plist.Add(p1)
 Dim p2=New SqlParameter("@Password",SqlDbType.NVarChar)
 p2.Value=user.Password
 plist.Add(p2)
 Dim row =DataAccess.InsertUpdateDelete(sql,plist)
 Return row
 End Function
 Public Function Update(user As AppUser) As Integer
 Dim sql ="UPDATE UserTable SET Name = '@Name',[Password] = '@Password' WHERE
id='@id'"
 Dim plist As New List(of DbParameter)
 Dim p1=New SqlParameter("@Name",SqlDbType.NVarChar)
 p1.Value=user.Name
 plist.Add(p1)
 Dim p2=New SqlParameter("@Password",SqlDbType.NVarChar)
 p2.Value=user.Password
 plist.Add(p2)
 Dim p3=New SqlParameter("@id",SqlDbType.Int)
 p3.Value=user.id
 plist.Add(p3)
 Dim row =DataAccess.InsertUpdateDelete(sql,plist)
 Return row
 End Function

Interfaces
Interfaces define the properties, methods, and events that classes can implement. With an Interface we

create a contract. Each Class that implements it must have certain Functions. Interfaces allow you to define

features as small groups of closely related properties, methods, and events; this reduces compatibility

problems because you can develop enhanced implementations for your interfaces without jeopardizing

existing code. You can add new features at any time by developing additional interfaces and

implementations.

There are several other reasons why you might want to use interfaces instead of class inheritance:

1. Interfaces are better suited to situations in which your applications require many possibly

unrelated object types to provide certain functionality.

2. Interfaces are more flexible than base classes because you can define a single implementation that

can implement multiple interfaces.

3. Interfaces are better in situations in which you do not have to inherit implementation from a base

class.

4. Interfaces are useful when you cannot use class inheritance. For example, structures cannot

inherit from classes, but they can implement interfaces.

Example:

Public interface IUserRepository
 Function IsUserExist(usr As AppUser) As Boolean
 Function GetUser() As List(Of AppUser)
 Function Add(user As AppUser) As Integer
 Function Update(user As AppUser) As Integer
end interface

Public Class UserRepository
 Implements IUserRepository

Public Function IsUserExist(user As AppUser) As Boolean Implements

IUserRepository.IsUserExist

...

